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Abstract—It is shown that the evaluation of the J-integral by the virtual crack extension method gives
“path-independent” results and is equivalent for 2D problems to the contour-integral evaluation also
with significant load relief due to crack extension, provided the stress work density W is defined
appropriately. Despite encouraging results concerning the application of 3D finite element pro-
cedures to complex structures there remains the problem to quantify the influence of the local stress
state on the material resistance against crack propagation.

THE J-INTEGRAL CONCEPT

Several concepts have been proposed to describe the process of crack initiation and propa-
gation in ductile materials. Every concept assumes a suitable loading parameter L, which
characterizes the intensity of the stress and strain field in a relevant vicinity of the crack
front. The onset of crack extension takes place if L exceeds a critical material value L_. If
stable crack extension occurs it is controlled by the respective material resistance curve
L(Aa). Beside the crack tip opening displacement CTOD the so-called J-integral has
obtained wide acceptance as a fracture parameter in the ductile regime.

Path-independent integrals for two-dimensional crack problems were introduced inde-
pendently by Cherepanov[1] and Rice[2]. Rice’s work especially gave significant impulses
towards the application of the J-integral

Oy,
J=£(Wdy—ﬂ5;ds) m

to fracture problems where linear elastic fracture mechanics LEFM is no longer valid. He
could also demonstrate that J is equivalent to the energy release rate

oU

J=—70.

@

if elastic (linear or non-linear) material behaviour is assumed with

W strain energy density

r integration path around the crack tip

s arclengthon I’

n; components of the unit outward normal vectoron I’
gy components of the stress tensor
T,=on; components of the traction vector

u; components of the displacement vector
U potential energy

D external force vector

vV volume

A crack area

& components of the strain tensor.

This latter interpretation of J served as basis for test procedures to measure the material
fracture toughness J,.. So, Begley and Landes[3] proposed a multi-specimen procedure to
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experimentally determine the energy release rate, which is exact if the material can be
described by a deformation plasticity. To avoid principal difficulties arising from a multi-
specimen test procedure, Rice et al.[4] proposed estimation techniques for J from a single
load—displacement record.

If the material is sufficiently ductile a structure will not fail immediately if the crack
tip loading parameter J reaches the initiation value J, but there may be stable crack
extension with still increasing load and increasing J. This behaviour is characterized by the
J-resistance curve J(Aa). To measure this material resistance curve the crack driving
parameter J and the crack extension Aa must be evaluated. Clarke er al.[5] proposed the
partial unloading technique which allows to determine the amount of crack extension in
the course of a single specimen experiment by repeated small unloadings using elastic
compliance calculations. In two-dimensional cases the numerical evaluation of J is readily
available by using (1) at the end of a finite element or finite difference analysis. More efficient
for finite element applications and easily extended to three-dimensional situations is the
stiffness derivative method introduced by Parks[6] for elastic and elastic-plastic situations.
DeLorenzi[7] introduced a node shifting and releasing technique to model crack extension
for plane problems.

The application of these experimental and numerical procedures based on (2) is cer-
tainly valid also for materials described by an incremental law of plasticity if the loading
of the structure is proportional with no unloadings anywhere in the structure. This condition
is violated if crack extension takes place. The possibie error was considered tolerable if the
relative amount of crack extension was small compared with specimen dimensions.

The theoretical basis of the J-concept can be found by consideration of conservation
laws within the theory of elasticity. So, for instance, Eshelby[8-10] found that the force on
a defect in linear elastic continua can be expressed as a surface integral of the energy
momentum tensor. Buggisch er al.[11] generalized these considerations and took also
nonmechanical dissipative energy terms into account. By neglecting dissipative terms and
volume forces, by assuming static cases and a *‘hyperelastic”’ material for which the stresses
can be derived from a potential

oW
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they were able to obtain (1) as a special case of their formulation.

At this point it is important to note that (3) does not necessarily imply elastic material
behaviour. For a material described by an incremental law of plasticity, i.e. the unloading
path is different from the loading path, the stress work density is defined in analogy to the
elastic case.

W= J "6,dé,. @)
0

From (4) follows immediately that (3) holds for any time in the loading history. It is
important to note that in the general elastic-plastic case W is no longer a unique function
of the stresses and strains only. However, W contains all dissipative terms coming from
plasticity. It must be integrated over the loading history, which will usually require numerical
analyses.

In conclusion it may be stated that also for elastic-plastic material behaviour J is
equivalent to the variation of the potential U with respect to virtual crack extension

ou
J=—a (5)

with W according to (4) and

U= j (W—pu)dV. (6)
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J no longer has the meaning of a (recoverable) energy release rate. Instead. J is dominated
by dissipative plastic work terms. This reflects the fact that in ductile materials initiation
and propagation of a crack requires a significant volume around the crack tip to be
plastically deformed. If the structure is loaded to the plastic collapse load, J may increase
without further increase of the load. From this steep increase of J the plastic collapse load
for arbitrarily loaded structures can be evaluated by using the J-integral. Having in mind
that in the brittle material regime J is correlated with K it may be stated that the J-concept
covers the whole range of material behaviour from linear elastic fracture mechanics to
plastic collapse.

IT" all quantities enlering (5) and (6) arc known the according J can be uniquely
determined, although it is in general dependent on the load history. On the other hand, J
defines the stress—strain around the crack front uniquely only in certain limiting cases. How
much this fact prohibits the application of the J-concept in engineering practice and if the
introduction of an additional parameter controlling the degree of tri-axiality or constraint
will bring about the necessary improvements must still be examined. The observed variation
of J-resistance curves for different specimen geometries leads to the assumption that the
influence of the constraint needs further investigations. It should be noted here that these
problems are not specific with the J-concept but arise in all elastic-plastic fracture concepts
discussed in the literature.

Through (5) the application of the stiffness derivative method is possible also for the
numerical simulation of J-controlled crack growth in steels described by an incremental
theory of plasticity and with unloading occurring in parts of the structure.

NUMERICAL RESULTS

At the IWM, the possibilities to calculate the J-integral by the stiffness derivative
procedure and to model crack propagation in 2D and 3D situations have been implemented
into the commercial finite element program ADINA([12] and successfully applied to elastic-
plastic crack problems[13-16). Through appropriate correction terms “‘path independence”
is maintained also for non-isothermal and dynamic cases or if the crack surfaces are loaded
by pressure. In Ref. [13] two-dimensional finite element analyses of a side-grooved compact
specimen were performed to generate fictitious force displacement records for different
J(Aa)-curves. The analysis with the flattest J(Aa)-curve has been reevaluated to verify the
equivalence of J according to (1) and (5). Figure 1 shows the calculated J-values from the
line integral (1) and from the stiffness derivative method (5). J is plotted vs force and vs
displacement. Even though this analysis represents the most critical case from the numerical
point of view, up to the total amount of crack propagation of 20% of the ligament there is
no numerical difference between the two evaluations. Only when the crack tip is no longer
surrounded by the integration paths or areas the calculated values become meaningless and
show increasing discrepancies. The crack propagation associated with the largest load point
displacement in Fig. 1 was about 40% of the original ligament.

To investigate the problem of transferability of J-resistance curves an attempt was
made to predict the behaviour of a smooth specimen by applying a J(Aa)-curve from a
side-grooved specimen. For this study two specimens (thickness B = 25 mm) were taken
from the same plate (steel A 542, yield stress and ultimate strength 533 MPa and 670 MPa,
room temperature) at adjacent locations in the same orientation. The first specimen had
20% side-grooves, the second specimen was tested without side-grooves and consequently
showed significant tunnelling of the crack front, as can be seen from Fig. 2. The force-
displacement curves and the J-R curves from the experiments are given in Figs. 3 and 4.
More details about the experiments are given in [17].

To demonstrate the capability of the numerical method the first experiment was
analysed in two dimensions. A relatively fine mesh with 96 elements and a total of 334
nodal points was used. The crack tip was modelled with conventional four-sided elements
in plane strain. The crack growth rate was controlled via the measured displacement versus
crack growth curve. To transfer results from specimens to real components the simulation
must be controlled by a J-R curve. Also, the numerical effort needed to perform such kind
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Fig. 1. Comparison of J vs force and J vs displacement caleulated from the line integral (1) and
from the stiffness derivative method (5).

of analysis is still very high and all possibilities must be examined to reduce this effort. This
is especially important if one considers applications in three dimensions. Therefore, a
parameter study has been performed where the finite element meshes have been simplified
to only 32 elements and the control of the simulation by a material J-R curve has been
incorporated. Figure 5 shows the force displacement diagrams of the experiment and of the
numerical simulations. The forces per unit thickness of the numerical simulation have been
multiplied by the net thickness of the specimen to obtain the total force to be compared
with the experiment. The agreement between the experiment and the numerical simulations
is good.

In the case of side-grooved specimens a two-dimensional analysis in plane strain seems
to predict the behaviour of global parameters force, displacement and also the J-integral
with sufficient accuracy. For the smooth specimen the fatigue crack front and especiaily the
crack front after stable crack extension is not straight at all (Fig. 2). So, a three-dimensional
finite element analysis of this experiment has been performed under the following restric-
tions.

To simplify the set-up of the original finite element mesh a straight initial crack
front was assumed with ¢ = 30 mm as opposed to the real crack front with a,,, = 30.2 mm,
anin = 28.8 mm and an average of @ = 29.8 mm. The local crack extension in the simulation is
controlled by comparing local values of J (eqn 5) at four positions along the (half-) crack
front with the J-resistance curve of the side-grooved specimen tested at the same temperature.
Figure 6 shows this J-R curve together with the two-dimensional simulation.

The finite element model (Fig. 7) consists of 66 elements with 20 nodes each, amounting
to a total of 1260 degrees of freedom. In every layer a ring of 5 collapsed elements is
arranged around the crack front. Multiple crack tip nodes and the mid-side position of the
mid-side nodes ensure a r~'-singularity in the strains. The loading of the specimen is
simulated by imposing constant displacement increments along a line representing the bolts.
For reasons of symmetry only one quarter of the specimen is modelled. A total of 10
displacement increments was used. Figure 8 shows the force—displacement diagrams of the
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Fig. 2. Crack surface of the smooth specimen.
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Fig. 7. Finite element model 3D.
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experiment and the simulation. Despite the complexity of the experiment and the limitations
in the model, the agreement is good.

The evaluation of the local values of J along the crack front according to eqn (3) is
shownin Fig. 9 for different load-line-displacements. After step 4 or V' = 0.6 mm respectively
the initiation value J; is exceeded in the middle of the specimen and the crack starts to
propagate in the model. The calculated shape of the crack front is plotted in Fig. 10. Note
that the crack shape is adjusted after each load step according to the J-variation of the
previous load step. The simulation predicts very well the tunnelling of the crack front in
the middle of the specimen. It overestimates, however, the crack propagation at the surfaces.
In the experiment no crack extension was observed at the surfaces even for much higher
displacements than ¥ = 1.5 mm where this analysis was terminated.

In Fig. 11 the average value of J is plotted vs the average value of crack propagation
and compared with the experimental evaluation. There is significant deviation between the
two curves. The first obvious reason might be that the single J-R curve taken from the first
specimen does not represent the material at the location of the second specimen. Moreover,
due to the fact that a resistance curve obtained from a side-grooved specimen was used to
control crack growth in the smooth specimen the influence of the constraint was not taken
into account. As can be concluded from the prediction of the crack extension at the surface,
the simulation certainly overestimates the crack propagation. On the part of the experiments
no direct information of the crack shapes was available in the course of the test. The average
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Fig. 10. Shape of the crack front.

crack growth was rather concluded from the unloading compliance. For the final crack
shape the unloading compliance significantly under-estimated the average crack length. It
is not clear, however, whether this effect is also present for the relatively small crack
extensions plotted in Fig. 11. If so, the experimental curve would come down, while the
simulated J~R curve would come up for reasons mentioned above.

To gain some insight into the variation of the constraint along the curved crack front
the ratio of the tangential stress component over the sum of the in-plane components (times
the Poisson’s ratio) is plotted over the specimen thickness in Fig. 12 for integration points
close to the ligament directly ahead of the crack front. The evaluation was done for the
final (10th) load step. The upper curve is obtained with v = 0.3, the lower curve with
v = 0.5. The solid line is obtained using the principal stresses, the crosses mark the respective
values, if the x-, y- arid z-components are used instead. Although no quantitative explanation
of this ratio, which should be unity for linear elastic material and plane strain, can be given
for elastic-plastic material behaviour, the trend clearly indicates a significant decrease of
the tri-axiality when the surface is approached. This corresponds to an increase in the
material resistance at the surface which can explain the fact that in the experiment the crack
did not even initiate at the surface.

CONCLUSIONS

The evaluation of the J-integral by the virtual crack extension method gives “path-
independent” results and is equivalent for 2D-problems to the contour-integral evaluation
also if significant load relief takes place in an elastic-plastic material.

Three-dimensional finite element procedures including the modeliing of stable crack
propagation were applied to predict the behaviour of a smooth specimen from a J-R curve
measured on a side-grooved specimen. The results are very encouraging with respect to the
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force—displacement curve of the specimen. For reasons given above, the agreement of
analysis and experiment in the near-crack-tip behaviour and in the global J-R curve is only
qualitative,

To proceed further in the question of transferability, more experimental and numerical
work is necessary, especially to quantify the influence of the stress state on the resistance
of a material against crack initiation and propagation.
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